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I A Not« on Primitive Matrlcer^ 

lo N. Harstein 

NoTombcr 12, 1952 

Suppose that A Is a square matrix consisting of mnnegative  elanents. 

In certain considarationf.  It is important to know when all  the elements of 

some power of A are strictly positiv«».    Frobenius {.2}-'   gave a very  simple 

necessary and sufficient condition for this  to ha; pen.    In this note we 

give "a slaple proof of this rebult^. / OM^,; proof is algebraic  in nature and 

avoids the use of  th?  convergence of  powers  of a matrix. - 

ill matrices considered here will have real elanents.     For two such 

matrices (not necessarily square)    B *  ^<)»  ^ "  ^ci^ "^ define 

if      b      • c for each 1,  J. B - C 

B * C if      B » C but B / C 

B > C if     b     >   c. for each 1,  J. 

A square matrix A ^ 0 (A is then  called nonnepatlve)   is  said to be 

Indecomposaole if for no permutation matrix P d^es 

^LL    ^2 

PAP 
-i 

0 k22 

where the A  .   are  square Bubraatrices. 

The fundamental  result about nonnogative,  Indecomposable matrices is 

due to Frobenius  [2]}   this,  and other,   results have recently been rederlved 

and extended in a greatly simplified manner by Wielandt [}]  and Debreu and 

Hersteln [1].     It is 

THEOiEM.    Let A - 0 be an indeccmpoeable matrix.    Then A has a positive 

characteristic root r such that 

1.      r i£ i simple root. 

/ 
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2. to r c*n be aaeocluted a üharactorlstlc vector x >  0. 

3. i£ •< i^ any other character la tic  root o^f A, 1 «^ |  ■ r. 

If A > 0 U.«n  3«   can be sharpened  to  [ «^ I   <  r for all characteristic 

roots •( / r of A. 

If A ■ 0 Is   indecomposable and if A has no characteristic root other 

than r of max .1  absolute  value  tf.«n A  la   said bo be primitive. 

In this paper we prove the 

THEOREU* ( ^robaniui).    Let A ^ 0.     Then A™ > 0 for some  integer m  > 0 if 

and only  if A  is   .-riaiilive. 

Sujipose  that A    > r).    Then A must be   in decomposable {   for  if 

PAP 
-1 

r*   ^ 
0     D 

tnen  "A"
1
?'

1
  - 

B^    C 

0      D 

m contradicting A    > 0. 

i-f 
Now suppose  Uiat r and re        / r are  cnaractrri^tic roots of A of maximal 

_, m      vt* 1 mm  im 4* 
absolute value.     Then A  ,  A     '  are bolh p.jaitive and nav^ r  ,  r »* , 

a*l       m+l  i(m-»l)-f .4     , *       « *     ^ ^   * ■> and r       ,   r      • respectively  as  roots of maximal  aujolute value 

Since the  lärmst  root of  a positive matrix  is  simple and  is  actually 

greater than any other root in  absolute value.    We must have 

m imvf ■      m*i  ilra-^l)'^        m*\      , 1^       , ,      ,.   . . re ■ r ,  r      t 1   • r      ,  whence e   T   - I,  a contradiction. 

m 
Tliere  ramains  but to shut» that   If A  is  primitive  thnr  A    > 0  for  a 

suitable  integer  -.  > 0.    This will be  prove 1 as a  consequvjrice  of  the 

following   few lommas,   which by   tnenuielv";.   are  of  some  Intnrest. 

Lemma 1.     If A Is  primitive then A    i£ primitive  for ever^r positive integwr 

m. 

Proof.     Since  r   in  a   simple  root  of  A  and   it;  t"»   on .y   root  of A  of  absolute 

value r,  r    is a simple root of A    an :  is  the  only root of A    of absolute 

value r   .     S^ wo need but show that A    is   indecomposable for overy  integer 
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m > 0.    Suppose that for SOB« 8 A    la not indeoumpo^abl«;  w© cam then «s- 

Bune that A 
8 B    C 

m 

-0   b 
Now Ax - rx for x>ClsoAx»rx; partition 

i aocordlng to  the partitioning of A    and wc hav« 
B   C 

0    D 
^   J 

That is Dx9 • r t«, and since x^  le   positive,  r    is a charÄCteriatic root 

i 
of D.    Sine« the  transposa, A ,  of A la alao indecoioposabl«, we hare 

■ 
Ä T ■ rT  for I   > 0.    Partitioning as above we obtA^n that r    is a charac- 

i 
teristic root of B , and so of B.     Being a characteristic root of both B 

and 1^ r    must be a raultipl« root of A1, which is a contradiction.    Th« 

lemma  is  thereby proved. 

L*ama 2.   (Melandt).    Let t  be an^ positiv« nuabar.    Suppose A ^ 0 la an 

n-l 
nxn indecompoaable matrix.    Then ( f   I-»A)        > 0 where I ts U» identity 

matrix. 

Pre of.    It cleanly suffices to  show that for any vector x,  x > 0, 

( €   I+A)""1 x  > 0.    Let 

v)   -1 
x      -  ( £   I*A) x.     Then        x^^-rx^Ax^    . 

Hence a zero component can occur in x , , only where a zero component al- 

ready occured in x i . However, not ev-ry auch zero component can be pre- 

berv^d in x ,    -. .     For if so,  by a  suitable reordering  of  the cocrdlnatea, 

r, N 

J 
,   P > 0, whence    *j,l

m € 

^ 

0 
^-J 

r, A11    A^ 

>>21    A22 

r^ 

lo J 

r '\ 
q 

o 
^ J 

fro« which it follows that A^p - 0,    This together with p > 0 forces 

A      - 0,  violating the indecomnosability of A.     So each application of 

6- I ♦ A to x  decreases  the nLunber of zero coordioites by at least one. 

Hence ( t   I-A)""^  > 0. 

As aii  -^asy coriHeqaence of Lenuaa 2 we obtain 
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Lamma  3.    If A •  (a, J is  inlmcoapoaable and a.. >   0 for »ach 1 than 

A""1  > 0. 

For let i be chosen  satisfying 0 < f   <    min a...    Thsn  A •  ^ I 4 B 
i 

wner« B ■ 0 is   indecompüsable.    Lemma  2 then yields A ~    >  0. 

Let Am -  (siT )•    ^en we have 

Lenusa h*    Let A • 0 bo indecompobabl«.    Then for a.-y i,J we  can find an 

■ -   i(ij) >   0 so  that a^^> 0. 

Proof.     Consider  first Uie case  i  / J.     Since 

(i-A)"-1 -i0-1 ♦ h:1 r\     0 (       \ 
A        ■♦...•♦   I > 0    by Lemma 2,  a       > 0 for some 

n ■ n-1.    Mow suppose i ■ J.     Since A  is  indecomposable,  no  colamn of zeros 

can  occur in A.     So there is a k with a, ,   > 0.    If k •=  i  ti^en a..   > ^ for 
kl li 

/ (a) all  m tririally.     If,  on  the   ;ther hand,  K f i,   Uien a.      > 0 for tome m, 

and since a;.     '  - i- ai      a   .  • a;.     a, .  > 0    the  leauua is  proved. 
11 ir      ri Ik       kl 

r 
# 

lie are now in  position  to  complete  the  proof of Theorws   .    Let A be 

•l       (ml) "l 
primitive.    Pick ^ no that  in A    ,  a11     >   0.    Let A1 - A      - ( 

"2 

m. 
By Lenraa 1 A,   is   primitive,     o  ü-iere  is an ffi_ such that  in A,   , 

*22
£ (1)   > 0.     Since su(l)   " ^     > 0,  all (l)   > 0.    Let A2  - L^.    Con- 

m. m„ •. .IT 

tinuing in this  way we arrUe at an  A    - A ' which   is  primitive and 

whose  diagonal  elements  are  ail   positiv«.    By Lenr.a  }    k     > 0 for some  t, 

hetice A    >  ^   for  some suitably chosen   inte^e-   m» 

Cowles Commission  for ReBe.irch  in Economics 
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FOOTNOTES 

1. This paper is a result of the work being done at the Cowles Commission 
for Research in Economics on the "Theoiy of Resource Allocation" under sub- 
contract to  the RAND Corporation. 

2. Numbers  in square brackets  refer to the bibliography at the  end  of 
this  paper. 
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